Links and Joints

- n joints, n + 1 links
- link 0 is fixed (the base)
- joint *i* connects link i 1 to link *i*
 - link i moves when joint i is actuated

given the joint variables and dimensions of the links what is the position and orientation of the end effector?

• because the base frame and frame 1 have the same orientation, we can sum the coordinates to find the position of the end effector in the base frame $(a_1 \cos \theta_1 + a_2 \cos (\theta_1 + \theta_2),$

from earlier in the course

Frames

using transformation matrices

$$T_{1}^{0} = R_{z,\theta_{1}} D_{x,a_{1}}$$
$$T_{2}^{1} = R_{z,\theta_{2}} D_{x,a_{2}}$$

$$T_{2}^{0} = T_{1}^{0} T_{2}^{1}$$

Links and Joints

- n joints, n + 1 links
- link 0 is fixed (the base)
- joint *i* connects link i 1 to link *i*
 - link i moves when joint i is actuated

- attach a frame $\{i\}$ to link i
 - all points on link *i* are constant when expressed in $\{i\}$
 - if joint *i* is actuated then frame $\{i\}$ moves relative to frame $\{i 1\}$
 - motion is described by the rigid transformation

$$T_i^{i-1}$$

• the state of joint *i* is a function of its joint variable q_i (i.e., is a function of q_i)

$$T_i^{i-1} = T_i^{i-1}(q_i)$$

this makes it easy to find the last frame with respect to the base frame

$$T_{n}^{0} = T_{1}^{0} T_{2}^{1} T_{3}^{2} \cdots T_{n}^{n-1}$$

more generally

$$T_{j}^{i} = \begin{cases} T_{i+1}^{i} T_{j+2}^{i+1} \dots T_{j}^{j-1} & \text{if } i < j \\ I & \text{if } i = j \\ (T_{j}^{i})^{-1} & \text{if } i > j \end{cases}$$

the forward kinematics problem has been reduced to matrix multiplication

- Denavit J and Hartenberg RS, "A kinematic notation for lowerpair mechanisms based on matrices." *Trans ASME J. Appl. Mech*, 23:215–221, 1955
 - described a convention for standardizing the attachment of frames on links of a serial linkage
- common convention for attaching reference frames on links of a serial manipulator and computing the transformations between frames

$$T_{i}^{i-1} = R_{z,\theta_{i}}T_{z,d_{i}}T_{x,a_{i}}R_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- a_i link length
- α_i link twist
- d_i link offset
- θ_i joint angle

Figure 3.2: Coordinate frames satisfying assumptions DH1 and DH2.

notice the form of the rotation component

$$\begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} \end{bmatrix}$$

this does not look like it can represent arbitrary rotations
can the DH convention actually describe every physically possible link configuration?

- yes, but we must choose the orientation and position of the frames in a certain way
 - (DHI) $\hat{x}_i \perp \hat{z}_{i-1}$
 - (DH2) \hat{x}_i intersects \hat{z}_{i-1}
- claim: if DH1 and DH2 are true then there exists unique numbers

$$a, d, \theta, \alpha$$
 such that $T_1^0 = R_{z,\theta} D_{z,d} D_{x,a} R_{x,\alpha}$

proof: on blackboard in class

DH Parameters

- a_i : link length
 - distance between z_{i-1} and z_i measured along x_i
- α_i : link twist
 - angle between z_{i-1} and z_i measured about x_i
- d_i : link offset
 - distance between o_{i-1} to the intersection of x_i and z_{i-1} measured along z_{i-1}
- θ_i : joint angle
 - angle between x_{i-1} and x_i measured about z_{i-1}

Example with Frames Already Placed

Figure 3.7: Three-link cylindrical manipulator.

Step 5: Find the DH parameters

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

Figure 3.7: Three-link cylindrical manipulator.

Denavit-Hartenberg Forward Kinematics

RPP cylindrical manipulator

http://strobotics.com/cylindrical-format-robot.htm

Denavit-Hartenberg Forward Kinematics

How do we place the frames?

Figure 3.7: Three-link cylindrical manipulator.

Step 1: Choose the z-axis for each frame

recall the DH transformation matrix

$$T_{i}^{i-1} = R_{z,\theta_{i}} T_{z,d_{i}} T_{x,a_{i}} R_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} \\ 0 & s_{\alpha_{i}} \end{bmatrix} \begin{bmatrix} s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\ -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\ c_{\alpha_{i}} & d_{i} \end{bmatrix}$$

$$\hat{\chi}_{i}^{i-1} \quad \hat{\chi}_{i}^{i-1} \quad \hat{\chi}_{i}^{i-1} \quad \hat{\chi}_{i}^{i-1}$$

Step 1: Choose the *z*-axis for each frame $\hat{z}_i \equiv axis \text{ of actuation for joint } i+1$

Step 1: Choose the z-axis for each frame

• Warning: the picture is deceiving. We do not yet know the origin of the frames; all we know at this point is that each z_i points along a joint axis

Step 2: Establish frame {0}

- place the origin o_0 anywhere on z_0
 - often the choice of location is obvious
- choose x_0 and y_0 so that $\{0\}$ is right-handed
 - often the choice of directions is obvious

Step 2: Establish frame {0}

- using frame {i-1} construct frame {i}
 - **DHI:** x_i is perpendicular to z_{i-1}
 - **DH2:** x_i intersects z_{i-1}
- 3 cases to consider depending on the relationship between z_{i-1} and z_i

Case I

• z_{i-1} and z_i are not coplanar (skew)

• α_i angle from z_{i-1} to z_i measured about x_i

Case 2

▶ z_{i-1} and z_i are parallel ($\alpha_i = 0$)

• notice that this choice results in $d_i = 0$

Case 3

▶ z_{i-1} and z_i intersect ($a_i = 0$)

Step 4: Place the end effector frame

Step 4: Place the end effector frame

Figure 3.7: Three-link cylindrical manipulator.

Step 5: Find the DH parameters

- a_i : distance between z_{i-1} and z_i measured along x_i
- α_i : angle between z_{i-1} and z_i measured about x_i
- d_i: distance between o_{i-1} to the intersection of x_i and z_{i-1} measured along z_{i-1}
- θ_i : angle between x_{i-1} and x_i measured about z_{i-1}

Step 5: Find the DH parameters

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

Figure 3.7: Three-link cylindrical manipulator.

More Denavit-Hartenberg Examples

Step 5: Find the DH parameters

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

Figure 3.7: Three-link cylindrical manipulator.

 once the DH parameters are known, it is easy to construct the overall transformation

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_{3}^{*}	0

$$T_{1}^{0} = R_{z,\theta_{1}}T_{z,d_{1}}T_{x,a_{1}}R_{x,\alpha_{1}} = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0\\ s_{1} & c_{1} & 0 & 0\\ 0 & 0 & 1 & d_{1}\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_{3}^{*}	0

$$T_{2}^{1} = R_{z,\theta_{2}}T_{z,d_{2}}T_{x,a_{2}}R_{x,\alpha_{2}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	0	d_1	$ heta_1^*$
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

$$T_{3}^{2} = R_{z,\theta_{3}}T_{z,d_{3}}T_{x,a_{3}}R_{x,\alpha_{3}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{3}^{0} = T_{1}^{0}T_{2}^{1}T_{3}^{2} = \begin{bmatrix} c_{1} & 0 & -s_{1} & -s_{1}d_{3} \\ s_{1} & 0 & c_{1} & c_{1}d_{3} \\ 0 & -1 & 0 & d_{1}+d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Spherical Wrist

Figure 1.6: The spherical wrist. The axes of rotation of the spherical wrist are typically denoted roll, pitch, and yaw and intersect at a point called the wrist center point.

Spherical Wrist

Spherical Wrist: Step 1

Spherical Wrist: Step 2

Spherical Wrist: Step 2

Spherical Wrist: Step 4

Step 5: DH Parameters

$$T_{6}^{3} = T_{4}^{3}T_{5}^{4}T_{6}^{5} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

RPP + Spherical Wrist

Figure 3.9: Cylindrical robot with spherical wrist.

RPP + Spherical Wrist

$$T_{6}^{0} = T_{3}^{0}T_{6}^{3} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_{x} \\ r_{21} & r_{22} & r_{23} & d_{y} \\ r_{31} & r_{32} & r_{33} & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$r_{11} = c_1 c_4 c_5 c_6 - c_1 s_4 s_6 + s_1 s_5 c_6$$

$$\vdots$$

$$d_z = -s_4 s_5 d_6 + d_1 + d_2$$

53

Stanford Manipulator + Spherical Wrist

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	0	-90	0	$ heta_1^*$
2	0	90	d_2	θ_2^*
3	0	0	d_3^*	0
4	0	-90	0	$ heta_4^*$
5	0	90	0	θ_5^*
6	0	0	d_6	θ_6^*

SCARA + 1DOF Wrist

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	a_1	0	d_1	$ heta_1^*$
2	<i>a</i> ₂	180	0	θ_2^*
3	0	0	d_3^*	0
4	0	0	d_4	$ heta_4^*$

